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Abstract. High performance cluster computing systems have used process migration  to 

balance the workload on their constituent computers and thus improve their overall 

throughput and performance. They however fail to migrate processes lively in the sense 

that moving processes are blocked (frozen) and are non-responsive to any requests sent 

to them while they are moving to their new destinations and have not reached and 

resumed their work on their new destinations. Previous efforts to prevent losing 

requests during process migration have been inefficient. We present a more efficient 

approach that keeps migrating processes live and responsive to requests during their 

journey to their new destinations. To achieve this, we have added a new state called the 

exile state to the traditional state model of processes in operating systems. A migratory 

process changes its status to the exile state before starting to migrate. All requests to the 

migratory process are executed locally on the old location of the process until the 

process reaches its destination computer and resumes its work anew. We show that our 

approach improves the performance of clusters supporting process migration by 

decreasing freeze time. 
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1 Background 

Process migration is the act of moving processes from one machine to other machines 

in distributed systems for load balancing, locality of resource usage, access to more 

processing power, and fault resilience. The context of a process (process state) to be 

migrated includes heap data, stack content, processor registers, address space, process 

running state, and process communication state (like open files or message channels) 

that all of them are essential for a process to continue its execution elsewhere 

[1],[2],[3]. The process running state is a part of process state that represents the 

running state of a process (Section 2). 

Part of process state that has the most overhead in process migration mechanisms is 

the process address space that might have hundreds of megabyte of data [2],[3], so the 

transmission of address space in recent implementations has been mentioned more 

than other process state parts. 



In the following subsections, we will review process migration algorithms 

demonstrating how to transfer the process address space and how important are 

challenges of these algorithms. 

In Section 2, we review the evolution of process models and explain the features of 

each state. In Section 3, we present our new efficient live process migration approach 

for high performance cluster computing systems. Section 4 reports an evaluation of 

the approach and Section 5 concludes the paper. 

 

1.1 Total-Copy Algorithm 

Total-Copy is the first and the most popular process migration algorithm [2] that is 

sometimes called eager (all) too [1]. Demos/MP [4], Amoeba [5], and Charlotte [6] 

are examples that use some versions of this algorithm in user level or kernel level. In 

this algorithm (Fig. 1) when a process is stopped executing in a source node upon 

migration, all of its state is transferred to the destination node and then resumes in the 

destination [4],[5],[6]. A modified version of this algorithm is eager (dirty) that is 

used in Mosix. This algorithm can be used only if the system has remote paging 

facilities. In this algorithm, just the modified pages are transferred at the migration 

start and then other pages are transferred on demand. The first cost of eager (dirty) is 

lower than Total-Copy [1] ,[7] ,[8],[9]. 

 
Fig. 1. Total-Copy algorithm 

1.2 Pre-Copy Algorithm 

The main goal of this algorithm when presented in System V [10] was to prevent 

failed communications in total copy algorithm [1]. In this algorithm, address space is 

transferred from source node to destination node while the process is executing on the 

source node (Fig. 2). When the number of modified migratory process’s pages in 

source node becomes under some threshold, the process is frozen (blocked). Then all 

of the remaining process state is transferred and the process resumes in destination 

node [10]. The freeze time is lower than that in Total-Copy algorithm. 

 
Fig. 2. Pre-Copy algorithm 



   

1.3 Demand Paging Algorithm 

This algorithm was first implemented in the Accent operating system by Zayas [2]. In 

this algorithm, the migratory process is frozen, the execution, the control data, and the 

address space metadata are transferred to destination node (Fig.3), but the address 

space remains in the source node. The destination node requests pages if it needs 

them. This algorithm is called Copy-On-Reference [11]. To improve this algorithm, 

some operating systems transfer one page of heap, stack, and code at migration time 

too [2].  

 
Fig. 3. Demand paging  

1.4 File Server Algorithm 

This algorithm was first developed by Douglis that uses an added machine as a file 

server in the Sprite operating system [12]. In the system the process is blocked, the 

modified pages and the modified file blocks are flushed to file server, and then the 

migratory process is resumed in the destination node and requests the pages from the 

file server if it needs them (Fig. 4). This algorithm is called Flushing [1]. 

 
Fig. 4. File server 

2 Evolution of Process State Models  

In the early operating systems that were not multi-task, when a process execution was 

started, it used the processor until it was finished and so those systems did not need 

any process running state. In the recent operating systems that are multi-task and 

processes can execute interleaved, any process in its lifetime could have different 

running states (that are exclusive) [13]. The kernel should maintain the information of 

process running state in order to improve dispatcher’s performance. For example, 

LINUX operating system holds this information in state field in task_struct structure 

[14]. In the following subsections, we review process running state evolution. 



2.1 Two-State Model  

In this model, that is the primary model in operating systems, a process is in the 

RUNNING state or NOT RUNNING state (Fig. 5). The disadvantage of this model is 

that processes can be in the NOT RUNNING queue for two reasons: have finished 

their processor quantum or waiting for I/O. The dispatcher should search the entire 

list of processes to select a suitable process and spend unnecessary time resulting in 

lower performance [13]. 

 

 
Fig. 5. Two-state transition diagram 

2.2 Three-State Model 

MINIX uses a three-state process model (Fig. 6) [15]. 

─ RUNNING: In this state, the process is executing its instructions. 

─ READY: the only resource that the process does not have in this state is the 

processor. The state of a process changes from RUNNING to  READY when it 

finishes its processor quantum, or from BLOCKED to READY when its desired 

request for I/O has been satisfied. 

─ BLOCKED: When a process executes a system call for I/O and the I/O is not 

available in memory, the process is removed from the dispatcher queue, its 

register values are saved in the process table, and it is blocked until its I/O is 

brought to memory. A blocked process cannot continue executing even if the 

processor is idle. 

 

Fig. 6. Three-state transition diagram 



   

2.3   Five-State Model 

Another process state model contains five states (Fig. 7) [17]: 

─ NEW: This state denotes the case where a process is created in response to 

fork() or exec() system calls. Process structures and process identifier are 

allocated to the process, but the process is still not loaded into the memory 

possibly because of a restriction on the number of processes in the memory. 

─ RUNNING: This state is the same as in the three-state model. 

─ READY: In this state, the only resource that a process does not have is the 

processor. While the system is ready to execute a new process, one process can 

move from the NEW state to this state. On the other hand, a process can move 

from the RUNNING state to this state because of finishing the processor 

quantum or process pre-emption (because the event that a process with higher 

priority in BLOCKED state was waiting for has occurred).  

─ WAITING: The process is waiting for completion of I/O or the occurrence of a 

special event. 

─ TERMINATED (exit): In this state, the memory allocated to a process is 

released. In this state, the operating system releases the process. Only the 

accounting programs calculate process usages for billing purposes. A process 

may move to this state from the READY state because of termination of its 

parent process or from the BLOCK state because a parent process has killed his 

children. 

 

 
Fig.7. Five-state transition diagram 

 

2.3  Seven-State Model 

Because the processor’s speed is more than I/O speed, all processes in the memory 

may be in the WAITING state. In order to prevent busy waiting the processor time, a 

new state named SUSPEND has been introduced (Fig. 8) [17]. 

 



 

Fig.8. Seven-state transition diagram 
 

The NEW, TERMINATED, READY, RUNNING, and BLOCKED states are exactly 

similar to their counterparts in the five-state model. The states SUSPENDED & 

READY and SUSPENDED & BLOCKED are different. If all the processes in the 

main memory are blocked and the processor is idle, some blocked processes can be 

moved to secondary storage and theie state changed to BLOCK&SUSPEND. If the 

event that the process in the secondary storage was waiting for occurs, the process 

changes its state to this state and remains in secondary storage. If the event that the 

process in the secondary storage was waiting for occurs, the process changes its state 

to the READY&SUSPEND state and remains in the secondary storage. 

2.4 Nine-State Model 

In UNIX operating system [16], [17], the process state diagram has nine states (Fig. 

9). In this model, the RUNNING state is split into USER RUNNING and KERNEL 

RUNNING, and the TERMINATED state is called ZOMBIE. The PRE-EMPTED 

state queue is the same as the READY IN MEMORY; their only difference is how the 

process changes to this state. When the process is running in kernel mode and 

completes its execution in this mode, the kernel may decide to pre-empt the current 

process because of a ready process with higher priority. Therefore, the current process 

goes to this state. Notice that the process only could pre-empt when it is switching 

from kernel mode to user mode. 

 



   

 
Fig.9. Nine-state transition diagram 

3 Our Approach 

 

As we stated in previous sections, in the current implementations of process 

migration, there is a freeze time for the migratory process wherein the process cannot 

respond to any requests. For example, in the Total-Copy algorithm, the speed of 

address space transfer is too low even for processes with small address space 

sometimes taking several minutes. In the Pre-Copy algorithm, although we can have 

the small freeze time, but this time is dependent on the modified pages in the last step 

and may be more than the Total-Copy algorithm. In the Demand Paging algorithm, 

the freeze time is too small compared to other algorithms but its main disadvantage is 

that the source node should keep the address space until the completion of the process 

execution. This data dependency decreases the fault resilient. 

The freeze time has overhead and decreases the performance, but it is important 

for the migratory process requiring to communicate with other processes. If the freeze 

time is too long, the migratory process is assumed to have failed and communications 

are terminated. This is important especially for HPC clusters because the number of 

critical requests with low waiting time is more than other distributed systems. 

We can consider the following steps in process migration: 

1) Negotiation: After negotiation between the source and destination nodes, if 

the destination accepts the migration request, an instance of a process is 

created in the destination node. 

2) Primary migration: Some parts - based on the algorithm – of the process 

state are transferred to the destination node and imported to the new instance. 



3) Freezing process: The migratory process is blocked in the source node and 

communications are temporarily suspended. The migration is completed by 

transferring the remaining parts of the process. 

4) Some means of forwarding references: For ease of communication after 

migration we have 3 solutions: 

- Keeping the address of the destination node on the source node 

(Sprite) 

- Searching the migrated process with Multicasting (System V) 

- Notifying the communicating processes (Charlotte)  

5) Resume: The migratory process is resumed in the destination node. 

One challenge in process migration algorithm is to decrease the freeze time in 

step 3. Therefore, the number of the failed communications will be lower than the 

current implementations. As we noted in the previous section, there is no state that a 

process can migrate and respond to its requests. Therefore, if we define a new process 

running state that all the machines in the cluster could see, and move the process to 

this state while migrating, and enable the process to respond to the requests while it 

resides in this state, then the availability of the process is improved. 

The new state (Exile) has been added to the seven-state process model (Fig.10). 

We describe this model in the following paragraphs. 

 

 
Fig. 10. Exile state in diagram. 

 

 If a process is in the NEW state and it is selected for migration, this migration 

means remote execution. In this paper, the migration does not mean remote execution. 

It means the process can migrate after starting its execution, but in the NEW state, 

only the kernel data structures have been allocated. Therefore, there is no transition 

between the NEW state and the Exile state. 



   

If a process is in the RUNNING state and the load balancer selects it for 

migration, it moves the process to the READY state before migrating it. 

If a suspended process (ready or blocked) is selected for migration, it is first 

moved to memory, its state is changed to READY or BLOCKED, and then to Exile 

state, and then it is migrated. 

When the process is in READY queue and has been selected for migration, it will 

be better to change its state to Exile, because in the READY state there may be 

requests. On the other hand, after completing migration, the migratory process should 

move from Exile to READY state at destination node because the process state should 

be similar before and after migration. 

In addition, if the process is waiting for an event in the BLOCKED state, it will 

be better to change its state to Exile because there may be signals from his parent and 

they should not be lost. Therefore, the new approach is like this: 

1- Negotiation: After negotiation between the source and destination nodes, if 

the destination accepts it, an instance of a process will be created in the 

destination node. 

2- Primary migration: Some parts - base on the algorithm – of the process 

state are transferred to the destination node and imported to the new instance. 

3- Go to Exile state: The migratory process goes to this state and can responds 

to some requests that could not in BLOCKED state. The migration is 

completed by transferring the remaining parts of the process. 

4- Go to state that it was in it before migration. 

5- Some means of forwarding references: for easing communication after 

migration we have 3 solutions: 

6- Resume: The migratory process is resumed in the destination node. 

4 Evaluation 

To evaluate our approach, we categorize the requests based on the ―maximum time 

that the sender could wait for receiving respond‖ in three groups and carried out three 

experiments: 

a) Critical processes with low waiting time. There are many such processes 

in HPC clusters.  

b) Processes with medium waiting time. 

c) Processes with high waiting time. 

We have assumed the following waiting times in our experiments: a) 10 

quantum, b) 30 quantum, and c) 50 quantum. In experiment 1 (Fig.11), we assumed 

the following numbers of processes a=20, b=30, c=40. That means 20 processes sent 

requests to a migratory process before the migratory process froze. Each one waited 

10 quantum on average to receive response from the migratory process, 30 processes 

sent requests to the migratory process before the migratory process froze and each one 

waited 30 quantum on average to receive response, and 40 processes sent to the 

migratory process and each one waited 10 quantum on average to receive response. In 



experiment 2 (Fig.12), the numbers were (a=40, b=20, c=30), and in experiment 3 

(Fig.13) are (a=30, b=40,c=20). 

 

Fig.11. Minimum number of killed processes 

in experiment 1: a = 20, b=30, c=40 

 

As Fig.11 shows, the minimum numbers of killed processes directly depend on 

the freeze time. When the freeze time decreases the number of killed processes 

decreases too. So in our approach because of the existence of a new state and because 

the migratory process can respond to requests in this state, the availability of the 

migratory process is increased. Fig.11 represents a distributed system with small 

number of critical requests. 

 
Fig.12  Minimum number of killed processes 

in experiment 2: a=40, b=20, c=30 
 

In Fig.12, the number of processes in category (b) is more than in two other 

categories. This experiment is for HPC clusters, because in these systems the response 

time is very important in inter process communications. When the freeze time 

decreases, the migratory process can respond to more requests compared to current 

process migration mechanisms, and the performance is increased. 



   

 

 
Fig.13. Minimum number of killed processes 

in experiment 3: a=30, b=40, c=20 
 

As Fig. 13 shows, when the freeze time of the migratory process is decreased the 

number of killed processes is decreased too. Therefore, in HPC clusters we need a 

process migration approach with small freeze time to improve the performance.  

5 Conclusion 

One of the important challenges of processes  in HPC clusters is the freeze time that 

the migratory process cannot respond to any requests and the sender processes may be 

killed because of not receiving any responses. In this paper, we propose to define a 

new state, named exile, over the cluster that the migratory processes stay in that while 

migrating. This state lets the process to be available and responsive to critical 

requests. Therefore, the communications does not break and the performance is 

increased. We evaluated this approach with the communications parameter. We 

considered three types of processes: critical processes, medium waiting time 

processes, and high waiting time processes. The results showed that the proposed 

approach improves the response time, and that it is especially essential for decreasing 

the killed rate of critical processes. One of the future works can be evaluating this 

approach with computing parameter. The relationship between the quanta that we 

used in our experiments with three categories of requests can be nearer to real ones in 

HPC clusters. 
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