:چکیده
أطٚظٜ ثب افعايف فبنّٝ ٔحُ ظ٘سٌی افطاز، ثب ٔطاوع اقشغبَ ٚ
اضائٝ ذسٔبر ٔب٘ٙس آٔٛظـ، سفطيح، ذطيس، ؾلأز ٚ غیطٜ ٘یبظ ثٝ
ؾفطٞبی ضٚظا٘ٝ افعايف يبفشٝ اؾز. ذسٔبرزٞی ثطای ايٗ حدٓ
ثبلای ؾفط، ٘یبظٔٙس ثؿشطٞبی ٔٙبؾت ؾیؿشٓٞبی حُٕ ٚ٘مُ اؾز. ثب
سٛخٝ ثٝ ٔحسٚزيز زض افعايف ْطفیز قجىٝ ضاٜٞب ٚ ٞٓچٙیٗ ْطفیز
وٓسط سبوؿی ٚ اسٛثٛؼ ٘ؿجز ثٝ ؾیؿشٓٞبی حُٕٚ٘مُ ضيّی زضٖٚ
قٟطی ٚ ٔكىلاسی ٔب٘ٙس آِٛزٌی نٛسی ٚ ٞٛا، سطافیه ؾٍٙیٗ زض
ثعضٌطاٜٞب ٚ ذیبثبٖٞب ٚ ٞعيٙٝ ثبلای ا٘طغی، سٕبيُ ثیفسطی ثٝ
اؾشفبزٜ اظ ؾیؿشٓٞبی ضيّی ثطلی ظيطظٔیٙی ثٝ خبی ؾبيط
ؾیؿشٓٞبی حُٕٚ٘مُ ٚخٛز زاضز. ثٙبثطايٗ ٔشطٚ زض ولاٖقٟط سٟطاٖ
خبيٍبٜ ٚيػٜای زاضز وٝ افعايف ویفیز ؾطٚيؽزٞی آٖ ٟٔٓ ثٝ ٘ٓط
ٔیضؾس. زض سٛؾٗٝ ؾیؿشٓٞبی حُٕ ٚ٘مُ ٖٕٛٔی ٔب٘ٙس ضاٜآٞٗ قٟطی،
ٖلاٜٚ ثط َطاحی ٔؿیط قجىٝ ٚ ٔىبٖ ايؿشٍبٜٞب، اضائٝ ظٔبٖثٙسی
حطوز ٘بٌٚبٖ ٘یع ٔطحّٝای اظ َطاحی اؾز. خسَٚ ظٔبٖثٙسی حطوز
لُبضٞب ثٝ ٖٙٛاٖ ٖبّٔی سأثیطٌصاض ثط ٔیعاٖ ضيبيز ٔكشطيبٖ،
ٞعيٙٝٞبی ثٟطٜثطزاضی ٔشطٚ ٚ ٞٓچٙیٗ ؾلأز ٔحیٍ ظيؿز إٞیز زاضز
ٚ زض٘شیدٝ ثٟیٙٝؾبظی ظٔب٘ی حطوبر لُبضٞب ٔٛخت افعايف ویفیز
ؾطٚيؽزٞی ٔیقٛز. زض دػٚٞفٞبی ثٟیٙٝؾبظی ظٔب٘ی سبوٖٙٛ اظ
سحّیُٞبی ضيبيی ٚ اٍِٛضيشٓٞبی زازٜوبٚی ثب قجیٝؾبظی ثطای
سغییطار وّی زض خسَٚ ظٔب٘ی اؾشفبزٜ قسٜ اؾز، زض ايٗ دطٚغٜ
زازٜٞب ثٝ قىُ خعئی ثب ٞسف يبفشٗ سفبٚرٞبی ٔٗٙبزاض ثب ؾبيط
زازٜٞب ٔٛضز ثطضؾی لطاض ٔیٌیط٘س. اظ آ٘دبيیوٝ ٔسر ظٔبٖ حًٛض
ٚ ا٘شٓبض زض ايؿشٍبٜ ٔشطٚ يىی اظ قبذمٞبی ٟٔٓ زض ضيبيزٔٙسی
ٔؿبفطاٖ اظ ؾیؿشٓ ذسٔبسی ٔشطٚ اؾز ِصا زض ايٗ دػٚٞف زازٜٞبی
ثبظٜ 6 ٔبٞٝ ؾفطٞبی سبذیطزاض زض ٔشطٚی سٟطاٖ زضيبفز اظ
ؾبظٔبٖ ٔطثَٛٝ زضيبفز وطزٜ ٚ ثب اؾشفبزٜ اظ ضٚـٞبی زازٜوبٚی
ٔٛضز ثطضؾی لطاض زازيٓ ٚ ثٝ سحّیُ ٚيػٌیٞبی زازٜٞب دطزاذشیٓ.
دؽ اظ قٙبذز ٘ؿجی ٚيػٌیٞبی ٟٔٓ ٔدٕٖٛٝ زازٜ، اظ ضٚـ سحّیُ
افشطالی خٟز قٙبؾبيی ؾفطٞبی سبذیطزاض ثب سفبٚر ٔٗٙبزاض ثب
ؾبيط ؾفطٞب اؾشفبزٜ قسٜ اؾز. ثب سٛخٝ ثٝ لسضر اٍِٛضيشٓ غ٘شیه
ثطای زؾزيبفشٗ ثٝ ضاٞىبض ثٟیٙٝ، ضٚقی ثب سطویت ايٗ اٍِٛضيشٓ
ٚ ضٚـ سحّیُ افشطالی ثطای قٙبؾبيی ظٔبٖٞبی سأذیط ٚ ثٟیٙٝؾبظی
آٖ َطاحی قسٜ اؾز ٚ ثٝ ٖٙٛاٖ ضاٜحُ دیكٟٙبزی زض ايٗ دػٚٞف
اضائٝ ٔیٌطزز.
کلمات کلیدی: زازٜوبٚی، ٔدٕٖٛٝ زازٜ،
ثٟیٙٝؾبظی، ٔشطٚ، ظٔبٖ سأذیط، سحّیُ افشطالی، اٍِٛضيشٓ غ٘شیه
Abstract:
Today, the need for day trips has increased with the
increasing distance of people's places of residence, with
employment centers and services such as education,
recreation, shopping, health and so on. Serving for this
high volume of travel requires proper platforms for
transportation systems. Given the limitations in
increasing the capacity of the road network as well as the
reduced capacity of taxis and buses compared to inter-city
rail transport systems and problems such as noise and air
pollution, heavy traffic on highways and roads, and high
energy costs, There is a greater tendency to use
underground electric rail systems than other
transportation systems. Therefore, the metro has a special
place in the metropolis of Tehran, which seems to increase
the quality of its service. In the development of public
transport systems such as urban rail, in addition to the
design of the network route and the location of stations,
the provision of fleet scheduling is also a stage of
design. Schedules of trains are important as a factor
affecting customer satisfaction, subway operating costs
and environmental health, thus improving the timing of
trains to improve service quality. Mathematical analysis
and simulation data mining algorithms have been used in
temporal optimization research to simulate overall changes
in the timetable. In this project, the data are examined
in detail for the purpose of finding significant
differences with other data. Since the time of waiting and
waiting at the metro station is one of the important
indicators in the satisfaction of the passengers with the
metro service system, in this study the data of 6 months
delayed trips to the Tehran metro were received from the
relevant organization and analyzed using data mining
methods. And analyzed the data properties. After relative
recognition of the important features of the dataset, the
discriminant analysis method was used to identify delayed
trips with significant differences with other trips. Due
to the power of the genetic algorithm to obtain the
optimal solution, a method by combining this algorithm and
a discriminant analysis method is designed to identify
latencies and optimize it and is proposed as a solution in
this study.
Keywords: Data Mining, DataSet, Time
Optimization, Metro, Delay Time, Discriminant Analysis,
Genetic Algorithm